Theses and Research
Permanent Link: https://digitalcollections.willamette.edu/handle/10177/27654
Important: Log in with your Willamette University credentials. Access to these papers is restricted to members of the Willamette University community.
Browse By
Browsing Theses and Research by Author "Altman, David"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Dictyostelium Myosin Bipolar Thick Filament Formation: Importance of Charge and Specific Domains of the Myosin Rod(Public Library of Science, 2004-11) Altman, David; Hostetter, Daniel; Rice, Sarah; Dean, Sara; McMahon, Peggy M.; Sutton, Shirley; Tripathy, Ashutosh; Spudich, James A.Myosin-II thick filament formation in Dictyostelium is an excellent system for investigating the phenomenon of self-assembly, as the myosin molecule itself contains all the information required to form a structure of defined size. Phosphorylation of only three threonine residues can dramatically change the assembly state of myosin-II. We show here that the C-terminal 68 kDa of the myosin-II tail (termed AD-Cterm) assembles in a regulated manner similar to full-length myosin-II and forms bipolar thick filament (BTF) structures when a green fluorescent protein (GFP) "head" is added to the N terminus. The localization of this GFP-AD-Cterm to the cleavage furrow of dividing Dictyostelium cells depends on assembly state, similar to full-length myosin-II. This tail fragment therefore represents a good model system for the regulated formation and localization of BTFs. By reducing regulated BTF assembly to a more manageable model system, we were able to explore determinants of myosin-II self-assembly. Our data support a model in which a globular head limits the size of a BTF, and the large-scale charge character of the AD-Cterm region is important for BTF formation. Truncation analysis of AD-Cterm tail fragments shows that assembly is delicately balanced, resulting in assembled myosin-II molecules that are poised to disassemble due to the phosphorylation of only three threonines.Item Thixotropy and Rheopexy of Muscle Fibers Probed Using Sinusoidal Oscillations(Public Library of Science, 2015-04-16) Altman, David; Minozzo, Fabio C.; Rassier, Dilson E.Length changes of muscle fibers have previously been shown to result in a temporary reduction in fiber stiffness that is referred to as thixotropy. Understanding the mechanism of this thixotropy is important to our understanding of muscle function since there are many in stances in which muscle is subjected to repeated patterns of lengthening and shortening. By applying sinusoidal length changes to one end of single permeabilized muscle fibers and measuring the force response at the opposite end, we studied the history-dependent stiffness of both relaxed and activated muscle fibers. For length change oscillations greater than 1 Hz, we observed thixotropic behavior of activated fibers. Treatment of these fibers with EDTA and blebbistatin, which inhibits myosin-actin interactions, quashed this effect, suggesting that the mechanism of muscle fiber thixotropy is cross-bridge dependent. We modeled a half-sarcomere experiencing sinusoidal length changes, and our simulations suggest that thixotropy could arise from force-dependent cross-bridge kinetics. Surprisingly, we also observed that, for length change oscillations less than 1 Hz, the muscle fiber exhibited rheopexy. In other words, the stiffness of the fiber increased in response to the length changes. Blebbistatin and EDTA did not disrupt the rheopectic behavior, suggesting that a non-cross-bridge mechanism contributes to this phenomenon.